

Physics with CMS Hadron Calorimeter

Shuichi Kunori U. of Maryland 24-Nov-2000

Jet,MET,tau

Some physics channels

Calibration

Pion Response: Linearlity

ECAHL+HCAL: Non compensating calorimeter

96'H2 Teast Beam Data

Data CMS Simulation

ET=3 GeV pion in $0<|\eta|<5$

Jet Response and Correction (CMSIM/ORCA)

Et-eta dependent correction for QCD jets

Et(corr)=a + b x $E_T(rec)$ + c x $E_T(rec)^2$

No-pileup

- => Different corrections for L1 jets, tau-jets and b-jets
- => Luminosity dependent.

Correction and Pileup Energy @ 10E34

<17.3> in-time min-bias events

~17 GeV in unit (eta x phi)!

(equiv. cone radius 0.56)

Resolution after corrections is worse because pileup fluctuations are not removed by the average correction.

Event-by-event correction: e.g. algorithm developed for heavy ion collision. (I.Vardanian)

Low Et Jets and Pile-up

Seed Cut

No cut

2 GeV / (0.087x0.087)

Suppression of fake jets!

... but still many fakes remaining.

Low E_T Jets and Threshold

$35 < E_T(gen) < 45geV$

E_T(quark)=20GeV

Lower threshold is better!

Electronics noise and occupancy define the threshold. >> aim at 0.5GeV/tower @ 10E34

MET Response

MET for Signal Events with Pile-up and Tower Threshold

With 17.3 min-bias events

No min-bias

- >> Not much pile-up effect with this resolution!
- >> Resolution gets worse as threshold increase.

MET Resolution

QCD Jets with no neutrino/muon (no pile-up)

$$Ex = \Sigma$$
 (Ex-tower)

Ey =
$$\Sigma$$
 (Ey-tower)

Any way to improve this?

e.g.

Ex'=Ex+
$$\Sigma$$
 (Δ (Ex-jet))

Ey'=Ey+
$$\Sigma$$
 (Δ (Ey-jet))

Does this work?

Attempt to improve L1 MET with Jet Correction

L1 MET = L1 MET + $\Sigma E_{t L1J}^{corr}$ - $E_{t L1J}^{no corr}$, for $E_{t L1J}$ > 20 GeV

(S.Abdoulline)

L1 Trigger- Jets/Tau

Jet or τ E_τ

- 12x12 trigger tower E_τ sums in 4x4 region steps with central region > others
 τ algorithm (isolated narrow energy deposits)
- Redefine jet as τ jet if none of the nine 4x4 region τ -veto bits are on Output
 - Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

L1 Jet Trigger

High Luminosity Jet Trigger Rates (InI<5)

10³⁴ cm⁻² s⁻¹ with Pileup Cutoffs of 250, 200, 100, and 80 GeV Both vs. calibrated energy and jets to |η|<5 Cutoffs of 250, 200, 100, & 80 GeV with 95% efficiency at 285, 225, 125, & 105 GeV Rates of 0.4, 0.4, 0.7, & 0.2 kHz

(P.Chumney)

Sample L1 Rates and Cutoffs @10E33

Trigger	Trigger E _T	95% Efficiency	90% Efficiency	Incremental	Cumulative
Type	Cutoff (GeV)	Threshold (GeV)	Threshold(GeV)	Rate (kHz)	Rate (kHz)
Non-Iso Electron	20	24	22	5.73	5.73
Non-Iso Dielectron	10	14	12	2.65	7.44
Single Tau	80	95	85	3.23	9.85
Double Tau	60	75	65	1.50	10.34
Jet (η <5)	120	150	140	1.19	10.80
Dijet (\eta <5)	90	115	105	1.01	10.90
Trijet (\eta <5)	70	95	85	0.33	10.91
Quadjet (\eta <5)	50	75	65	0.33	10.99
Jet · Electron	100 & 10	125 & 14	115 & 12	1.11	11.10
Tau · Electron	65 & 10	80 & 14	70 & 12	3.50	11.87
Missing E_T (η <5)	100		275	0.01	11.87
Electron · $ME_T(\eta < 5)$	10 & 50		12 & 175	0.15	11.90
$\text{Jet} \cdot \text{ME}_{\text{T}}(\eta < 5)$	50 & 50		65 & 175	0.63	12.24
Sum $E_T(\eta < 5)$	500		~1000	0.02	12.24
		12.24			

Sample L1 Rates and Cutoff @ 10E34

Trigger	Trigger E _T	95% Efficiency	90% Efficiency	Individual	Cumulative
Type	Cutoff (GeV)	Threshold (GeV)	Threshold(GeV)	Rate (kHz)	Rate (kHz)
Iso-Electron	30	35	32	7.21	7.21
Iso-Dielectron	15	20	18	0.59	7.47
Single Tau	150	175	165	1.27	8.71
Double Tau	80	105	95	2.52	10.86
Jet (η <5)	250	285	275	0.40	11.16
Dijet (lηl<5)	200	225	215	0.36	11.25
Trijet (\emploss <5)	100	125	115	0.72	11.58
Quadjet (\eta <5)	80	105	95	0.24	11.61
Jet · Electron	150 & 15	165 & 20	155 & 18	0.24	12.70
Tau · Electron	90 & 15	125 & 20	115 & 18	1.38	12.24
Missing E_T (η <5)	150		350	0.005	12.24
Electron ¹ · ME _T ($ \eta $ <5)	15 & 100		18 & 250	0.005	12.24
$\text{Jet} \cdot \text{ME}_{\text{T}} \left(\eta \!\! < \!\! 5 \right)$	80 & 100		95 & 250	0.1	12.29
Sum $E_T(\eta < 5)$	1000		~1500	0.03	12.32
Non Iso-Electron	55	60	58	0.65	12.78
Non Iso-Dielectron	25	30	28	0.21	12.93
	13.00	12.93			

Single Top -> Wb -> Ivb

Measurement of

CMS Note 1999/048

- V_{tb}
- properties and decays of top
- background process to new physics

Background: top+top 800pb W+2jets W+3jets

```
Event Selection:
  only one charged lepton
      PT > 20GeV in |\eta| < 2.5
  only one cnetral jet
      ET > 20GeV in |\eta| < 2.5
        (jet veto against tt)
      b-tagged (20<ET<100GeV)
  forward tagging jet
      ET>50GeV in 2.5<|\eta|<4.0
  MET
      > 20GeV
  W Mass (lepton + MET)
      50<MT<100GeV
  Di-jet mass outside M(Z<sup>0</sup>)
  top mass cut
```

140<M(Wb)<180GeV

Single Top - Kinematics

Top Mass

b/c tagging efficiency and fake

- very old parametrization used in this analysis-

Charm rate and fake rate play important role in background rejection.

$$S/N = 3.5/1.0$$

66 signal events / 100pb 30 housrs @ 10E33. Efficiency: 1.2%

H(170) -> WW -> IvIv

(CMS Note 1998/089)

Event Selection:

(total 11 cuts)

two opposite sign leptos

- PT cuts (20GeV,10GeV)
- angle between two leptons

jet veto

- ET>20GeV in |η|<2.4: removed

Mass (WW)

- M > 140GeV

Results:

- number of events (5fb⁻¹) H / tt / WW = 54 / 35 / 28
- good channel for discovery
- background: need good understanding
- jet veto: important.

Background:

tt -> (Wb)(Wb) ->(Ivb)(Ivb) 62.5pb WW(continum) -> IvIv 7.4pb

$ttH(\sim 110) -> (Inb) (jjb) (bb)$

primary selection
4 b-tags
M(bb)
+
lepton

M(bb)

Jet energy correction without: 19%

with: 14%

(V.Drollinger & S.Arcelli)

Higgs Couplings

D.Zeppenfeld, R.Kinnunen, A.Nikitenko, E.Richter-Was, Phys.Rev., D62(2000) pp13009

Accuracy expected with 200 fb⁻¹ of data with ATLAS+CMS detectors at LHC

- □ measure Hγγ, Hττ, Hgg couplings at 10 % level
- □ hWW coupling ($|\sin(\beta-\alpha)|$) can be measured at 5% level

qqH(135), H -> 2τ -> ej

HF acceptance for tagging jets (0/1/2) jets = (47%,46%, 7%) --> need both HE and HF

Cuts:

$$\begin{split} &E_{t}(e) > 15 GeV, \ |\eta(e)| < 2.4 \\ &E_{t}(\tau) > 30 GeV, \ |\eta(\tau)| < 2.4 \\ &E_{t}(q) > 40 GeV, \ |\eta(q)| < 5.0 \\ &|\Delta\eta(q1q2)| > 4.4, \ M(q1q2) > 1 TeV \\ &mini-jet \ veto \end{split}$$

Result:

H /Zjj(QCD)**/Zjj(EW)**/Wjjj 6.7+-0.3 / 0.63 / 0.74 / 0.14 for 30fb⁻¹

(**generated by S.IIIyin, comphep)

qqH(135): Mass Resolution

CMSJET simulation

ORCA4 simulation

with no jet energy corrections

Need to improve mass with MET!

H -> invisible

Black Hole @ low luminosity

Need high luminosity to close the hole (with Higgs channels shown on right).

CMS has studied H(500) -> $\tau\tau$ -> j+j, e+j H(200) -> $\tau\tau$ -> j+j, e+j qqH(135) -> $\tau\tau$ -> e+j and look promising @ 10³⁴

More challenging channel is qqH(120-400) -> invisible

 $E_{T}(q) > 40 GeV, |\eta(q)| < 5.0$ $\Delta \eta(qq) > 4.4$ M(qq) > 1 TeV mini jet veto MET > 100 GeV

Only forward jets are positive signal!

(O.J.Eboil and D.Zeppenfeld, MADPH-00-1191)

Optimization of HF Fiber Spacing

Simulation done with test beam data and PYTHIA for two longitudinal segmentaion.

(V.Kolosov)

5mm spacing was chosen.

HCAL Calibration Tools (light -> ADC -> Jets/MET/tau)

A) Megatile scanner:

- Co⁶⁰ gamma source
- each tile: light yield
- during construction all tiles

B) Moving radio active source:

- Co⁶⁰ gamma source
- full chain: gain
- during CMS-open (manual) all tiles
- during off beam time (remote) tiles in layer 0 & 9

C) UV Laser:

- full chain: timing, gain-change
- during off beam time tiles in layer 0 & 9 all RBX

D) Blue LED:

- timing, gain change
- during the off beam time all RBX

E) Test beam

- normalization between GeV vs. ADC vs. A,B,C,D
- ratios: elec/pion, muon/pion
- before assembly a few wedges

F) Physics events (in-situ)

- mip signal, link to HO muon
- calo energy scale (e/pi)charged hadron
- physics energy scale photon+jet balancing
 Z+jet balancing di-jets balancing di-jet mass
 W->ii in top decay
- >> non-linear response
- >> pile-up effect

One Scenario (HB/HE)

(same to HF)

1) Before megatile insertion

megatile scanner: all tilesmoving wire source: all tiles

2.1) After megatile insertion

- moving wire source: all tiles / 2 layer

- UV laser: 2 layers/wedge

2.2) After megatile insertion

- test beam: a few wedges.

Absolute calib.

Accuracy of 2% for single particle

3) Before closing the CMS

moving wire source: all tilesUV laser & blue LED: all RBX

(do 3, about once/year)

4) Beam off times

- moving wire source: 2layer/wedge

- UV laser: 2 laer/wedge

- UV laser & blue LED: all RBX

5) Beam on (in situ)

- jets / tau / MET

ECAL+HCAL

Monitor for change with time

Accuracy < 1%

once/month

a few times/day (?)

In Situ Calibration (Physics Event Trigger)

A) Min-bias events trigger

- estimation of pile-up energy.
- normalization within each eta-ring.
- isolated low E_T charged tracks

2% accuracy with 1k events in HF

B) QCD Jet trigger (pre-scaled)

- normalization within each eta-ring
- normalization at the HB-HE-HF boundary
- test on uniformity over full range.
- dijet balancing to normalize \mathbf{E}_{T} scale in rings.

C) tau trigger

- isolated high Et charged tracks (Et>30GeV)

D) muon trigger (isolated)

- good for monitoring.
- probably too small energy deposit for calibration.

In Situ Calibration (2)

E) 1 photon + 1 jet

- E_T Scale over full range by photon-jet balancing

Note:

- depend on ECAL Et scale
- sensitive to ISR (& FSR)

F) Z (-> ee,
$$\mu\mu$$
) + 1 jet

- E_T Scale over full range by Z-jet balancing

Note:

- depend on Tracker and/or ECAL
- sensitive to ISR (& FSR)

Photon-Jet balancing for HF Jets

E.Dorshkevich, V.Gavrilov CMS Note 1999/038

Using Et(
$$\gamma$$
) > 40GeV, $|\eta(\gamma)| < 2.4$

- minimize MET with 4000 γ

Et(calib) =
$$C_{(S)}(\eta)$$
 Et_(Short)
+ $C_{(L)}(\eta)$ Et_(Long)

- 2.3 days at 10E33 with 1% efficiency

Accuracy < 1-5% for Et>40GeV

(tagging jets)

Z (ee,μμ) - jet balancing

CDF Data (100pb⁻¹): energy scale accuracy to 5% for Et>30GeV

700k events/month at 10E33

|η (lep.)|<2.6 ET(jet)>40GeV

In Situ Calibration (3)

F) Top trigger (1 lepton + jets + 2 b-tags)

- E_T scale by Mass(jj) for W in Top decay.

Parameterized simulation

Peak: 69.6 GeV sigma: 7.2 GeV

45000 events / month at 10E33 with double b-tagging.

Not depend on ISR!

Freeman & Wu (Fermilab-TM-1984)

Summary (1)

Energy Resolution and Scale

- Simple Jet energy correction is working in MC world.
 - Need to extend it to MET and tau.
- We have been using very simple weighting method to sum energies in ECAL and HCAL.
 - look for better method(s), e.g. energy depend weights, use of fine segments in ECAL, use of Tracker, etc.
- In-situ calibration will provide absolute scale.
- Need plan to cover energy calibration up to the highest energy.

High Luminosity

- Low E_T jets/MET (<100GeV) at high luminosity is very challenging for both trigger and offline analyses.
 - Need good algorithms to remove fake jets and to subtract pile-up energy.

Summary (2)

Physics with HCAL

- Much of physics analyses depend on jets, MET and tau.
- Forward tagging jet become more and more important, e.g. studies on property of Higgs.

Calibration and Monitoring

- Need to develop complete scenario.
- All the tools should be ready on day-1 of data taking and calibration has to be done in 1-3 months for quick publication of physics results.

JetMET Physics Group (S.Eno)

- http://home.fnal.gov/~sceno.main.html
- The group is expanding. -- Need better communication.
 - Web, VRVS, local coordination.
- Next milestone: May 2001- HLT in DAQ TDR.